Skip to Content
Merck
  • Differentiation of South American crack and domestic (US) crack cocaine via headspace-gas chromatography/mass spectrometry.

Differentiation of South American crack and domestic (US) crack cocaine via headspace-gas chromatography/mass spectrometry.

Drug testing and analysis (2014-10-11)
Valerie L Colley, John F Casale
ABSTRACT

South American 'crack' cocaine, produced directly from coca leaf, can be distinguished from US domestically produced crack on the basis of occluded solvent profiles. In addition, analysis of domestically produced crack indicates the solvents that were used for cocaine hydrochloride (HCl) processing in South America. Samples of cocaine base (N=3) from South America and cocaine from the USA (N=157 base, N=88 HCl) were analyzed by headspace-gas chromatography-mass spectrometry (HS-GC-MS) to determine their solvent profiles. Each cocaine HCl sample was then converted to crack cocaine using the traditional crack production method and re-examined by HS-GC-MS. The resulting occluded solvent profiles were then compared to their original HCl solvent profiles. Analysis of the corresponding crack samples confirmed the same primary processing solvents found in the original HCl samples, but at reduced levels. Domestically seized crack samples also contained reduced levels of base-to-HCl conversion solvents. In contrast, analysis of South American crack samples confirmed the presence of low to high boiling hydrocarbons and no base-to-HCl conversion solvents. The presented study showed analysis of crack cocaine samples provides data on which processing solvents were originally utilized in the production of cocaine HCl in South America, prior to conversion to crack cocaine. Determination of processing solvents provides valuable information to the counter-drug intelligence community and assists the law enforcement community in determining cocaine distribution and trafficking routes throughout the world.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Methyl acetate, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Supelco
Tartaric Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Methyl acetate, ReagentPlus®, 99%
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., ACS reagent, ≥99.9% (GC)
Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Supelco
Methyl acetate, analytical standard
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Toluene-d8, 99 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Methyl acetate, ≥98%, FG
Sigma-Aldrich
Methyl acetate, anhydrous, 99.5%
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
Toluene-d8, 99.6 atom % D
Sigma-Aldrich
Toluene-d8, "100%", 99.96 atom % D
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Methyl acetate, natural, 98%, FG