Skip to Content
Merck
  • The effect of standard and high-fluence corneal cross-linking (CXL) on cornea and limbus.

The effect of standard and high-fluence corneal cross-linking (CXL) on cornea and limbus.

Investigative ophthalmology & visual science (2014-07-24)
Olivier Richoz, David Tabibian, Arthur Hammer, François Majo, Michael Nicolas, Farhad Hafezi
ABSTRACT

When treating peripheral ectatic disease-like pellucid marginal degeneration (PMD), corneal cross-linking with UV-A and riboflavin (CXL) must be applied eccentrically to the periphery of the lower cornea, partly irradiating the corneal limbus. Here, we investigated the effect of standard and double-standard fluence corneal cross-linking with riboflavin and UV-A (CXL) on cornea and corneal limbus in the rabbit eye in vivo. Epithelium-off CXL was performed in male New Zealand White rabbits with two irradiation diameters (7 mm central cornea, 13 mm cornea and limbus), using standard fluence (5.4 J/cm(2)) and double-standard fluence (10.8 J/cm(2)) settings. Controls were subjected to epithelial removal and riboflavin instillation, but were not irradiated with UV-A. Following CXL, animals were examined daily until complete closure of the epithelium, and at 7, 14, 21, and 28 days. Animals were killed and a corneoscleral button was excised and processed for light microscopy and immunohistochemistry. For both irradiation diameters and fluences tested, no signs of endothelial damage or limbal vessel thrombosis were observed, and time to re-epithelialization was similar to untreated controls. Histological and immunohistochemical analysis revealed no differences in the p63 putative stem cell marker expression pattern. Even when using fluence twice as high as the one used in current clinical CXL settings, circumferential UV-A irradiation of the corneal limbus does not alter the regenerative capacity of the limbal epithelial cells, and the expression pattern of the putative stem cell marker p63 remains unchanged. This suggests that eccentric CXL may be performed safely in PMD.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(−)-Riboflavin, from Eremothecium ashbyii, ≥98%
Sigma-Aldrich
(−)-Riboflavin, meets USP testing specifications
Sigma-Aldrich
(−)-Riboflavin, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥98%
Riboflavin, European Pharmacopoeia (EP) Reference Standard
USP
Riboflavin, United States Pharmacopeia (USP) Reference Standard
Supelco
Riboflavin, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Riboflavin (B2), analytical standard
Riboflavin for peak identification, European Pharmacopoeia (EP) Reference Standard