- Murine Frizzled-1 behaves as an antagonist of the canonical Wnt/beta-catenin signaling.
Murine Frizzled-1 behaves as an antagonist of the canonical Wnt/beta-catenin signaling.
Activation of the Wnt signaling cascade provides key signals during development and in disease. Wnt signals are transduced by seven-transmembrane Frizzleds (Fzs) and the single transmembrane low density lipoprotein receptor-related proteins 5 or 6. In the course of the analysis of genes regulated by bone morphogenetic protein 2 in mesenchymal cells we found a significant induction of murine Frizzled-1 (mFz1) gene expression. Unexpectedly overexpression of mFz1 dramatically repressed the induction of alkaline phosphatase mediated by either bone morphogenetic protein 2 or Wnt3a in these cells. Moreover mFz1 overexpression significantly repressed both beta-catenin translocation into the nucleus and T cell factor signaling mediated by Wnt3a. Importantly microinjection of mFz1 transcript in Xenopus embryo inhibited the ability of Wnt1 to induce the expression of the Wnt/beta-catenin target gene Siamois in animal cap assay and secondary axis formation in whole embryo. By using chimeric constructs in which N- and C-terminal segments of mFz1 were replaced by the corresponding parts of Xfz3 we demonstrated that the antagonistic activity resides in the cysteine-rich domain of the N-terminal part. The antagonist activity of mFz1 could be prevented by overexpression of Galphaq-(305-359), which specifically uncouples Gq-coupled receptors, suggesting that Galphaq signaling contributes to the inhibition of Wnt/beta-catenin pathway by mFz1. This is the first time that a Frizzled receptor has been reported to antagonize Wnt/beta-catenin.