Skip to Content
Merck
All Photos(2)

Documents

901237

Sigma-Aldrich

DHR Catalyst

greener alternative

≥95%

Synonym(s):

(2S,3R,4S)-2-Methyltetrahydro-2H-pyran-3,4-diol, Dihydrorhamnal

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C6H12O3
CAS Number:
Molecular Weight:
132.16
UNSPSC Code:
12352201

Assay

≥95%

form

powder or crystals

reaction suitability

reagent type: catalyst

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

greener alternative category

storage temp.

−20°C

SMILES string

[H]C1([H])C([H])([H])O[C@](C([H])([H])[H])([H])[C@@](O[H])([H])[C@@]1([H])O[H]

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.

Application

Dihydrorhamnal (DHR) catalyst was reported by the Morken Lab to be an effective carbohydrate-derived catalyst for enantioselective diboration of alkenes. Related capabilities were observed with the 6-tertbutyldimethylsilyl-1,2-dihydroglucal (TBS-DHG) catalyst( 901235 ).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Lichao Fang et al.
Journal of the American Chemical Society, 138(8), 2508-2511 (2016-02-09)
Catalytic enantioselective diboration of alkenes is accomplished with readily available carbohydrate-derived catalysts. Mechanistic experiments suggest the intermediacy of 1,2-bonded diboronates.
Carbohydrate/DBU Cocatalyzed Alkene Diboration: Mechanistic Insight Provides Enhanced Catalytic Efficiency and Substrate Scope
Yan L, et al.
Journal of the American Chemical Society, 140, 3663-3673 (2018)
Lu Yan et al.
Journal of the American Chemical Society, 140(10), 3663-3673 (2018-02-15)
A mechanistic investigation of the carbohydrate/DBU cocatalyzed enantioselective diboration of alkenes is presented. These studies provide an understanding of the origin of stereoselectivity and also reveal a strategy for enhancing reactivity and broadening the substrate scope.

Articles

Enantioselective alkene diboration is a valuable strategy for transforming unsaturated hydrocarbons into useful chiral building blocks.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service