Skip to Content
Merck
  • SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1.

SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1.

Oncogene (2014-06-10)
S M Jeong, J Lee, L W S Finley, P J Schmidt, M D Fleming, M C Haigis
ABSTRACT

Iron metabolism is essential for many cellular processes, including oxygen transport, respiration and DNA synthesis, and many cancer cells exhibit dysregulation in iron metabolism. Maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs), which control the expression of iron-related genes by binding iron-responsive elements (IREs) of target mRNAs. Here, we report that mitochondrial SIRT3 regulates cellular iron metabolism by modulating IRP1 activity. SIRT3 loss increases reactive oxygen species production, leading to elevated IRP1 binding to IREs. As a consequence, IRP1 target genes, such as the transferrin receptor (TfR1), a membrane-associated glycoprotein critical for iron uptake and cell proliferation, are controlled by SIRT3. Importantly, SIRT3 deficiency results in a defect in cellular iron homeostasis. SIRT3 null cells contain high levels of iron and lose iron-dependent TfR1 regulation. Moreover, SIRT3 null mice exhibit higher levels of iron and TfR1 expression in the pancreas. We found that the regulation of iron uptake and TfR1 expression contribute to the tumor-suppressive activity of SIRT3. Indeed, SIRT3 expression is negatively correlated with TfR1 expression in human pancreatic cancers. SIRT3 overexpression decreases TfR1 expression by inhibiting IRP1 and represses proliferation in pancreatic cancer cells. Our data uncover a novel role of SIRT3 in cellular iron metabolism through IRP1 regulation and suggest that SIRT3 functions as a tumor suppressor, in part, by modulating cellular iron metabolism.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting mouse Tfrc
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
1-Hexanethiol, 99% (GC)
Sigma-Aldrich
MISSION® esiRNA, targeting human TFRC
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
1-Hexanethiol, 95%
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 0.85%