Skip to Content
Merck
  • Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity.

Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity.

Journal of lipid research (2014-12-23)
Bharat Jaishy, Quanjiang Zhang, Heaseung S Chung, Christian Riehle, Jamie Soto, Stephen Jenkins, Patrick Abel, L Ashley Cowart, Jennifer E Van Eyk, E Dale Abel
ABSTRACT

Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCβII. These findings reveal a novel mechanism linking lipotoxicity with a PKCβ-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-α-Tubulin antibody, Mouse monoclonal, clone AA13, purified from hybridoma cell culture
Sigma-Aldrich
Sodium fluoride 0.5 M solution
Supelco
Sodium Fluoride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium fluoride, puriss., meets analytical specification of Ph. Eur., BP, USP, 98.5-100.5% (calc. to the dried substance)
Sigma-Aldrich
Sodium fluoride, ACS reagent, ≥99%
Sigma-Aldrich
Sodium fluoride, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium fluoride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Sodium fluoride, 99.99% trace metals basis
Sigma-Aldrich
Sodium fluoride, BioXtra, ≥99%
Sigma-Aldrich
Sodium fluoride, BioReagent, suitable for insect cell culture, ≥99%
Supelco
Fluoride ion solution for ISE, 0.1 M F-, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
Anti-LC3 antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Supelco
DL-Dithiothreitol solution, 1 M in H2O
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
SAFC
HEPES
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
SAFC
HEPES
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)