Skip to Content
Merck
  • Identification of diet-derived constituents as potent inhibitors of intestinal glucuronidation.

Identification of diet-derived constituents as potent inhibitors of intestinal glucuronidation.

Drug metabolism and disposition: the biological fate of chemicals (2014-07-11)
Brandon T Gufford, Gang Chen, Philip Lazarus, Tyler N Graf, Nicholas H Oberlies, Mary F Paine
ABSTRACT

Drug-metabolizing enzymes within enterocytes constitute a key barrier to xenobiotic entry into the systemic circulation. Furanocoumarins in grapefruit juice are cornerstone examples of diet-derived xenobiotics that perpetrate interactions with drugs via mechanism-based inhibition of intestinal CYP3A4. Relative to intestinal CYP3A4-mediated inhibition, alternate mechanisms underlying dietary substance-drug interactions remain understudied. A working systematic framework was applied to a panel of structurally diverse diet-derived constituents/extracts (n = 15) as inhibitors of intestinal UDP-glucuronosyl transferases (UGTs) to identify and characterize additional perpetrators of dietary substance-drug interactions. Using a screening assay involving the nonspecific UGT probe substrate 4-methylumbelliferone, human intestinal microsomes, and human embryonic kidney cell lysates overexpressing gut-relevant UGT1A isoforms, 14 diet-derived constituents/extracts inhibited UGT activity by >50% in at least one enzyme source, prompting IC(50) determination. The IC(50) values of 13 constituents/extracts (≤10 μM with at least one enzyme source) were well below intestinal tissue concentrations or concentrations in relevant juices, suggesting that these diet-derived substances can inhibit intestinal UGTs at clinically achievable concentrations. Evaluation of the effect of inhibitor depletion on IC(50) determination demonstrated substantial impact (up to 2.8-fold shift) using silybin A and silybin B, two key flavonolignans from milk thistle (Silybum marianum) as exemplar inhibitors, highlighting an important consideration for interpretation of UGT inhibition in vitro. Results from this work will help refine a working systematic framework to identify dietary substance-drug interactions that warrant advanced modeling and simulation to inform clinical assessment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tromethamine, meets USP testing specifications
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Kaempferol, ≥90% (HPLC), powder
Sigma-Aldrich
Kaempferol, ≥97.0% (HPLC)
Sigma-Aldrich
Apigenin, ≥95.0% (HPLC)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Trizma® base, BioUltra, for molecular biology, ≥99.8% (T)
Sigma-Aldrich
Naringenin, natural (US), 98%
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Methanol, NMR reference standard
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Supelco
Kaempferol, analytical standard
Supelco
Apigenin, analytical standard
Supelco
(±)-Naringenin, analytical standard
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Supelco
Quercetin, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Quercetin, United States Pharmacopeia (USP) Reference Standard
Trometamol, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
USP
Tromethamine, United States Pharmacopeia (USP) Reference Standard
Hymecromone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O