Skip to Content
Merck
  • Treatment with basic fibroblast growth factor-incorporated gelatin hydrogel does not exacerbate mechanical allodynia after spinal cord contusion injury in rats.

Treatment with basic fibroblast growth factor-incorporated gelatin hydrogel does not exacerbate mechanical allodynia after spinal cord contusion injury in rats.

The journal of spinal cord medicine (2013-07-03)
Takeo Furuya, Masayuki Hashimoto, Masao Koda, Atsushi Murata, Akihiko Okawa, Mari Dezawa, Dai Matsuse, Yasuhiko Tabata, Kazuhisa Takahashi, Masashi Yamazaki
ABSTRACT

Besides stimulating angiogenesis or cell survival, basic fibroblast growth factor (bFGF) has the potential for protecting neurons in the injured spinal cord. To investigate the effects of a sustained-release system of bFGF from gelatin hydrogel (GH) in a rat spinal cord contusion model. Adult female Sprague-Dawley rats were subjected to a spinal cord contusion injury at the T10 vertebral level using an IH impactor (200 kdyn). One week after contusion, GH containing bFGF (20 µg) was injected into the lesion epicenter (bFGF - GH group). The GH-only group was designated as the control. Locomotor recovery was assessed over 9 weeks by Basso, Beattie, Bresnahan rating scale, along with inclined plane and Rota-rod testing. Sensory abnormalities in the hind paws of all the rats were evaluated at 5, 7, and 9 weeks. There were no significant differences in any of the motor assessments at any time point between the bFGF - GH group and the control GH group. The control GH group showed significantly more mechanical allodynia than did the group prior to injury. In contrast, the bFGF - GH group showed no statistically significant changes of mechanical withdrawal thresholds compared with pre-injury. Our findings suggest that bFGF-incorporated GH could have therapeutic potential for alleviating mechanical allodynia following spinal cord injury.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Gelatin from porcine skin, powder, gel strength ~300 g Bloom, Type A, BioReagent, suitable for electrophoresis, suitable for cell culture
Sigma-Aldrich
Gelatin from porcine skin, Type A, lyophilized powder, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Gelatin from bovine skin, Type B
Sigma-Aldrich
Gelatin from bovine skin, gel strength ~225 g Bloom, Type B
Sigma-Aldrich
Gelatin, tested according to Ph. Eur.
Millipore
Gelatin from porcine skin, suitable for microbiology, ultrahigh gel strength
Sigma-Aldrich
Gelatin from cold water fish skin, solid
Sigma-Aldrich
Gelatin from bovine skin, Type B, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Gelatin solution, Type B, 2% in H2O, tissue culture grade, BioReagent, suitable for cell culture
Sigma-Aldrich
Prionex® Highly purified Type A, aqueous solution
Sigma-Aldrich
Gelatin from porcine skin, gel strength ~175 g Bloom, Type A
Millipore
Gelatin from porcine skin, medium gel strength, suitable for microbiology
Millipore
Gelatin from porcine skin, suitable for microbiology, high gel strength
Millipore
Gelatin from porcine skin, suitable for microbiology, low gel strength
Sigma-Aldrich
Gelatin from porcine skin, gel strength 80-120 g Bloom, Type A
Sigma-Aldrich
Gelatin from porcine skin, gel strength 300, Type A