- Two- and three-dimensional extended solids and metallization of compressed XeF2.
Two- and three-dimensional extended solids and metallization of compressed XeF2.
The application of pressure, internal or external, transforms molecular solids into extended solids with more itinerant electrons to soften repulsive interatomic interactions in a tight space. Examples include insulator-to-metal transitions in O(2), Xe and I(2), as well as molecular-to-non-molecular transitions in CO(2) and N(2). Here, we present new discoveries of novel two- and three-dimensional extended non-molecular phases of solid XeF(2) and their metallization. At approximately 50 GPa, the transparent linear insulating XeF(2) transforms into a reddish two-dimensional graphite-like hexagonal layered structure of semiconducting XeF(4). Above 70 GPa, it further transforms into a black three-dimensional fluorite-like structure of the first observed metallic XeF(8) polyhedron. These simultaneously occurring molecular-to-non-molecular and insulator-to-metal transitions of XeF(2) arise from the pressure-induced delocalization of non-bonded lone-pair electrons to sp(3)d(2) hybridization in two-dimensional XeF(4) and to p(3)d(5) in three-dimensional XeF(8) through the chemical bonding of all eight valence electrons in Xe and, thereby, fulfilling the octet rule at high pressures.