- Automated determination of silicon isotope natural abundance by the acid decomposition of cesium hexafluosilicate.
Automated determination of silicon isotope natural abundance by the acid decomposition of cesium hexafluosilicate.
A procedure for the automated determination of isotopic abundances of silicon from biogenic and lithogenic particulate matter and from dissolved silicon in fresh or saltwaters is reported. Samples are purified using proven procedures through the reaction of Si with acidified ammonium molybdate, followed by precipitation with triethylamine and combustion of the precipitate to yield silicon dioxide. The silicon dioxide is converted to cesium hexafluosilicate by dissolution in hydrogen fluoride and the addition of cesium chloride. Isotopic analysis is accomplished by decomposing the cesium hexafluosilicate with concentrated sulfuric acid to generate silicon tetrafluoride gas. Silicon tetrafluoride is purified cryogenically and analyzed on a gas source isotope ratio mass spectrometer. Yields of silicon tetrafluoride are >99.5%. The procedure can be automated by modifying commercial inlet systems designed for carbonate analysis. The procedure is free of memory effects and isotopic biases. Reproducibility is +/-0.03-0.10 per thousand for a variety of natural and synthetic materials.