Skip to Content
Merck
  • UPF1 promotes the formation of R loops to stimulate DNA double-strand break repair.

UPF1 promotes the formation of R loops to stimulate DNA double-strand break repair.

Nature communications (2021-06-24)
Greg H P Ngo, Julia W Grimstead, Duncan M Baird
ABSTRACT

DNA-RNA hybrid structures have been detected at the vicinity of DNA double-strand breaks (DSBs) occurring within transcriptional active regions of the genome. The induction of DNA-RNA hybrids strongly affects the repair of these DSBs, but the nature of these structures and how they are formed remain poorly understood. Here we provide evidence that R loops, three-stranded structures containing DNA-RNA hybrids and the displaced single-stranded DNA (ssDNA) can form at sub-telomeric DSBs. These R loops are generated independently of DNA resection but are induced alongside two-stranded DNA-RNA hybrids that form on ssDNA generated by DNA resection. We further identified UPF1, an RNA/DNA helicase, as a crucial factor that drives the formation of these R loops and DNA-RNA hybrids to stimulate DNA resection, homologous recombination, microhomology-mediated end joining and DNA damage checkpoint activation. Our data show that R loops and DNA-RNA hybrids are actively generated at DSBs to facilitate DNA repair.

MATERIALS
Product Number
Brand
Product Description

Millipore
Phosphatase Inhibitor Cocktail Set II, A cocktail of five phosphatase inhibitors for the inhibition of acid and alkaline phosphatases as well as protein tyrosine phosphatases (PTPs). Suitable for use with cell lysates and tissue extracts.
Sigma-Aldrich
NMDI14, ≥97% (HPLC)
Millipore
Protease Inhibitor Cocktail Set III, EDTA-Free, Protease inhibitor cocktail III, EDTA-free for inhibiting aspartic, cysteine, and serine proteases as well as aminopeptidases in mammalian cells and tissues.
Sigma-Aldrich
Anti-Actin antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-DNA-RNA Hybrid Antibody, clone S9.6, clone S9.6, from mouse