Skip to Content
Merck
  • Massively parallel Cas13 screens reveal principles for guide RNA design.

Massively parallel Cas13 screens reveal principles for guide RNA design.

Nature biotechnology (2020-06-11)
Hans-Hermann Wessels, Alejandro Méndez-Mancilla, Xinyi Guo, Mateusz Legut, Zharko Daniloski, Neville E Sanjana
ABSTRACT

Type VI CRISPR enzymes are RNA-targeting proteins with nuclease activity that enable specific and robust target gene knockdown without altering the genome. To define rules for the design of Cas13d guide RNAs (gRNAs), we conducted massively parallel screens targeting messenger RNAs (mRNAs) of a green fluorescent protein transgene, and CD46, CD55 and CD71 cell-surface proteins in human cells. In total, we measured the activity of 24,460 gRNAs with and without mismatches relative to the target sequences. Knockdown efficacy is driven by gRNA-specific features and target site context. Single mismatches generally reduce knockdown to a modest degree, but spacer nucleotides 15-21 are largely intolerant of target site mismatches. We developed a computational model to identify optimal gRNAs and confirm their generalizability, testing 3,979 guides targeting mRNAs of 48 endogenous genes. We show that Cas13 can be used in forward transcriptomic pooled screens and, using our model, predict optimized Cas13 gRNAs for all protein-coding transcripts in the human genome.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Doxycycline hyclate
Sigma-Aldrich
Serum Plus II Medium Supplement
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)