Skip to Content
Merck
  • The influence of hyaluronan on the structure of a DPPC-bilayer under high pressures.

The influence of hyaluronan on the structure of a DPPC-bilayer under high pressures.

Colloids and surfaces. B, Biointerfaces (2016-03-10)
Thomas Zander, D C Florian Wieland, Akanksha Raj, Min Wang, Benedikt Nowak, Christina Krywka, Andra Dėdinaitė, Per Martin Claesson, Vasil M Garamus, Andreas Schreyer, Regine Willumeit-Römer
ABSTRACT

The superior lubrication properties of synovial joints have inspired many studies aiming at uncovering the molecular mechanisms which give rise to low friction and wear. However, the mechanisms are not fully understood yet, and, in particular, it has not been elucidated how the biolubricants present at the interface of cartilage respond to high pressures, which arise during high loads of joints. In this study we utilize a simple model system composed of two biomolecules that have been implied as being important for joint lubrication. It consists of a solid supported dipalmitoylphosphatidylcholin (DPPC) bilayer, which was formed via vesicles fusion on a flat Si wafer, and the anionic polysaccharide hyaluronan (HA). We first characterized the structure of the HA layer that adsorbed to the DPPC bilayers at ambient pressure and different temperatures using X-ray reflectivity (XRR) measurements. Next, XRR was utilized to evaluate the response of the system to high hydrostatic pressures, up to 2kbar (200MPa), at three different temperatures. By means of fluorescence microscopy images the distribution of DPPC and HA on the surface was visualized. Our data suggest that HA adsorbs to the headgroup region that is oriented towards the water side of the supported bilayer. Phase transitions of the bilayer in response to temperature and pressure changes were also observed in presence and absence of HA. Our results reveal a higher stability against high hydrostatic pressures for DPPC/HA composite layers compared to that of the DPPC bilayer in absence of HA.

MATERIALS
Product Number
Brand
Product Description

Avanti
16:0-12:0 NBD PC, Avanti Research - A Croda Brand 810131C