- Identification and quantification of odours from oxobiodegradable polyethylene oxidised under a free radical flow by headspace solid-phase microextraction followed by gas chromatography-olfactometry-mass spectrometry.
Identification and quantification of odours from oxobiodegradable polyethylene oxidised under a free radical flow by headspace solid-phase microextraction followed by gas chromatography-olfactometry-mass spectrometry.
Recently oxobiodegradable polyethylene gained popularity as food packaging material due to its potential to reduce polymer waste. However, this type of material can release after its oxidation off-odour compounds that affect the organoleptic properties of packaged food. Odour compounds released from both polyethylene and oxobiodegradable polyethylene before and after oxidation under a free radicals flow were investigated after 1 day, 2 days and 3 days of oxidation. The samples were analysed using headspace solid phase microextraction followed by gas chromatography-mass spectrometry and headspace solid phase microextraction coupled to gas chromatography-olfactometry-mass spectrometry. Sixty-two different odorous compounds were identified. 4-methylthio-2-butanone (fruit), nonanal (fat) and 3,6-nonadienal (fat) were present in different materials before oxidation. Multiple headspace-solid phase microextraction has been used to quantify all analytes. The most abundant compound was (Z)-3-hexenyl hexanoate with a concentration range between 1.5791±0.1387µg/g and 4.8181±0.3123µg/g. Compounds such as 2-dodecenal, 2-octenal, 2-pentanol, 3-nonenal, 3,6-nonadienal, ethyl 3-methylbutanoate, ethyl octenoate, hexanone, isopropyl hexanoate, octanal were below their LOD evaluated using MS detector; however, they were detected by gas chromatography-olfactometry. The minimum LOD and LOQ were 0.011µg/g and 0.036µg/g, respectively.