Skip to Content
Merck
  • Importance of a suitable working protocol for tape stripping experiments on porcine ear skin: Influence of lipophilic formulations and strip adhesion impairment.

Importance of a suitable working protocol for tape stripping experiments on porcine ear skin: Influence of lipophilic formulations and strip adhesion impairment.

International journal of pharmaceutics (2015-06-29)
C Nagelreiter, D Mahrhauser, K Wiatschka, S Skipiol, C Valenta
ABSTRACT

The tape stripping method is a very important tool for dermopharmacokinetic experiments in vitro and the accurate measurement of the removed corneocytes is key for a reliable calculation of a drug's skin penetration behavior. Therefore, various methods to quantify the amount of corneocytes removed with each tape strip have been employed, ranging from gravimetric approaches to protein assays and recently near infrared densitometry (NIR) has become very widely used. As this method is based on a reduction of light intensity, interference of formulation components seems conceivable, as they could scatter light and change the results. In this study, NIR measurements were compared to a protein assay and in addition, the influence of highly lipophilic formulations on the results of tape stripping experiments was investigated as impairment of the adherence of strips has been reported. To this end, different tape stripping protocols were employed. The obtained results ensure suitability of the NIR method and moreover suggest a more pronounced influence on adherence with increasing lipophilicity in applied formulations. The results show that adaptation of the tape stripping protocol to the specifications of envisioned experiments is important for reliable results. Two protocols were found favorable and are presented in this work.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Isopropyl myristate, Vetec, reagent grade, 98%
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Fludrocortisone acetate, ≥98%
Sigma-Aldrich
Diclofenac sodium salt
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Sodium phosphate dibasic solution, BioUltra, 0.5 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Acetonitrile, Preparateur, ≥99.9% (GC), One-time steel-plastic (SP) drum
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile
Sigma-Aldrich
Potassium phosphate monobasic, Vetec, reagent grade, 99%
Sigma-Aldrich
Sodium phosphate dibasic, Vetec, reagent grade, 99%
Sigma-Aldrich
Acetonitrile
Sigma-Aldrich
Acetonitrile
Sigma-Aldrich
Acetonitrile
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Sodium phosphate dibasic, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%, free-flowing, Redi-Dri
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Ascarite®, Sodium hydroxide-coated silica, 20-30 mesh
Sigma-Aldrich
2-Propanol, BioReagent, for molecular biology, ≥99.5%
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sodium phosphate dibasic, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, 99.95% trace metals basis
Sigma-Aldrich
Sodium phosphate dibasic, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, for molecular biology, ≥98.5% (titration)