Skip to Content
Merck
  • Preparation and chromatographic evaluation of a newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography.

Preparation and chromatographic evaluation of a newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography.

Journal of chromatography. A (2015-03-03)
Tu Liang, Qing Fu, Aijin Shen, Hui Wang, Yu Jin, Huaxia Xin, Yanxiong Ke, Zhimou Guo, Xinmiao Liang
ABSTRACT

A diterpene glycoside compound, rebaudioside A (commonly abbreviated as RA), was immobilized onto porous silica surface through "thiol-ene" click chemistry strategy. The successful immobilization of the RA on the silica support was confirmed by FT-IR and elemental analysis. Chromatographic characteristics of the new stationary phase, named Click TE-RA, were evaluated by a set of diverse analytes such as carbohydrates, nucleosides, and organic acids in hydrophilic interaction liquid chromatography (HILIC) mode. The effects of water content, buffer pH and concentration were investigated and a typical HILIC retention feature of Click TE-RA was observed at high organic modifier content. The Click TE-RA stationary phase was further studied by a series of glycoside compounds. Tunable retention mechanisms from hydrophilic to hydrophobic interactions were observed. Separation of very polar compounds including oligosaccharides, nucleic acid bases and nucleosides using Click TE-RA in HILIC mode was successfully accomplished. In addition, separation of saponins both in HILIC and reversed-phase liquid chromatography (RPLC) modes was performed, demonstrating the presence of orthogonality between two different modes on Click TE-RA column. The multiple interactions induced by polar sugar group and hydrophobic aglycone group allowed this Click TE-RA to serve as a multi-mode stationary phase in two-dimensional liquid chromatography.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
Adenosine, ≥99%
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Maltitol, ≥98% (HPLC)
Sigma-Aldrich
Uracil, BioReagent, suitable for cell culture
Sigma-Aldrich
Adenosine, suitable for cell culture, BioReagent
Sigma-Aldrich
Uracil, ≥99.0%
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Millipore
Sucrose, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Adenosine
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, puriss. p.a., ACS reagent, ≥99.5% (GC)
Sigma-Aldrich
Guanosine, BioReagent, suitable for cell culture
Sigma-Aldrich
Guanosine, ≥98%
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Ammonium formate solution, BioUltra, 10 M in H2O
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
(3-Mercaptopropyl)trimethoxysilane, 95%