Skip to Content
Merck
  • Comparison of sorafenib-loaded poly (lactic/glycolic) acid and DPPC liposome nanoparticles in the in vitro treatment of renal cell carcinoma.

Comparison of sorafenib-loaded poly (lactic/glycolic) acid and DPPC liposome nanoparticles in the in vitro treatment of renal cell carcinoma.

Journal of pharmaceutical sciences (2015-01-13)
James Liu, Benjawan Boonkaew, Jaspreet Arora, Sree Harsha Mandava, Michael M Maddox, Srinivas Chava, Cameron Callaghan, Jibao He, Srikanta Dash, Vijay T John, Benjamin R Lee
ABSTRACT

The objective of this study is to develop and compare several Sorafenib-loaded biocompatible nanoparticle models in order to optimize drug delivery and tumor cellular kill thereby improving the quality of Sorafenib-regimented chemotherapy. Sorafenib-loaded poly (lactic-co-glycolic) acid (PLGA), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes, and hydrophobically modified chitosan (HMC)-coated DPPC liposomes were evaluated for several characteristics including zeta potential, drug loading, and release profile. Cytotoxicity and uptake trials were also studied using cell line RCC 786-0, a human metastatic clear cell histology renal cell carcinoma cell line. Sorafenib-loaded PLGA particles and HMC-coated DPPC liposomes exhibited significantly improved cell kill compared to Sorafenib alone at lower concentrations, namely 10-15 and 5-15 μM from 24 to 96 h, respectively. At maximum dosage and time (15 μM and 96 h), Sorafenib-loaded PLGA and HMC-coated liposomes killed 88.3 ± 1.8% and 98 ± 1.1% of all tumor cells, significant values compared with Sorafenib 81.8 ± 1.7% (p < 0.01). Likewise, HMC coating substantially improved cell kill for liposome model for all concentrations (5-15 μM) and at time points (24-96 h) (p < 0.01). PLGA and HMC-coated liposomes are promising platforms for drug delivery of Sorafenib. Because of different particle characteristics of PLGA and liposomes, each model can be further developed for unique clinical modalities.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lauric aldehyde, ≥95%, stabilized, FCC, FG
Sigma-Aldrich
Dodecyl aldehyde, 92%
Sigma-Aldrich
Lauric aldehyde, natural, ≥95%, FG
Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine, ≥99% (TLC)
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine, semisynthetic, ≥99%
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Millipore
Dichloromethane, suitable for HPLC, ≥99.8% (GC)
Supelco
2-Propanol, analytical standard
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)