Skip to Content
Merck
  • Use of multivariate statistical techniques to optimize the separation of 17 capsinoids by ultra performance liquid chromatography using different columns.

Use of multivariate statistical techniques to optimize the separation of 17 capsinoids by ultra performance liquid chromatography using different columns.

Talanta (2015-01-27)
Janclei P Coutinho, Gerardo F Barbero, Oreto F Avellán, A Garcés-Claver, Helena T Godoy, Miguel Palma, Carmelo G Barroso
ABSTRACT

In this work a multivariate statistical tool (Derringer and Suich optimization) was proposed for the separation of seventeen capsinoids (natural and synthetic) using the UHPLC-DAD chromatography. Capsinoids were analyzed at 280 nm. The variables optimized were the mobile phase (water (0.1% acetic acid as solvent A) and acetonitrile (0.1% as solvent B)), gradient time and flow rate. Two columns with different length (50 and 100 mm) were used for the chromatographic separation. The two columns used properly separated the seventeen capsinoids, however the 100 mm column length showed a better chromatographic separation with a shorter run time and smaller peak widths. These results provided better values of limit of detection and quantification for the 100 mm column length. The better conditions of separation with the 100 mm column length were established with: initial mobile phase with 41.8% of solvent B; 3.96 min of linear gradient time to reach 100% of solvent B; flow rate of 0.679 mL min(-1). A validation of the method has been done with excellent values of repeatability (RSD<1.92) and intermediate precision (RSD<3.92). The developed method has been applied to real samples. Capsiate has been identified and quantified in some varieties of peppers.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tridecanoic acid, ≥98%
Sigma-Aldrich
Pentadecanoic acid, ~99% (capillary GC)
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Supelco
Ethyl acetate, analytical standard
Millipore
Toluene, suitable for HPLC, ≥99.7% (GC)
Sigma-Aldrich
Ethyl acetate, ReagentPlus®, ≥99.8%
Sigma-Aldrich
tert-Butyldimethylsilyl chloride, reagent grade, 97%
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Hexanoyl chloride, 97%
Sigma-Aldrich
Acetonitrile, puriss. p.a., ACS reagent, ≥99.5% (GC)
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Toluene, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl acetate, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99.5% (GC)
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)