Skip to Content
Merck
  • Conjugated linoleic acid induces an atheroprotective macrophage MΦ2 phenotype and limits foam cell formation.

Conjugated linoleic acid induces an atheroprotective macrophage MΦ2 phenotype and limits foam cell formation.

Journal of inflammation (London, England) (2015-02-28)
Monica de Gaetano, Kawthar Alghamdi, Simone Marcone, Orina Belton
ABSTRACT

Atherosclerosis, the underlying cause of heart attack and strokes, is a progresive dyslipidemic and inflammatory disease where monocyte-derived macrophage cells play a pivotal role. Although most of the mechanisms that contribute to the progression of atherosclerosis have been identified, there is limited information on those governing regression. Conjugated linoleic acid (CLA) is a group of isomers of linoleic acid that differ in the position and/or geometry of their double bonds. We have previously shown that a specific CLA blend (80:20 cis-9,trans-11:trans-10,cis-12-CLA) induces regression of pre-established atherosclerosis in vivo, via modulation of monocyte/macrophage function. However, the exact mechanisms through which CLA mediates this effect remain to be elucidated. Here, we address if CLA primes monocytes towards an anti-inflammatory MΦ2 macrophage and examine the effect of individual CLA isomers and the atheroprotective blend on monocyte-macrophage differentiation, cytokine generation, foam cell formation and cholesterol metabolism in human peripheral blood monocyte (HPBMC)-derived macrophages. cis-9,trans-11-CLA and the atheroprotective 80:20 CLA blend regulates expression of pro-inflammatory mediators and modulates the inflammatory cytokine profile of macrophages and foam cells. In addition, cis-9,trans-11-CLA and CLA blend primes HPBMCs towards an anti-inflammatory MΦ2 phenotype, characterised by increased scavenger receptor (CD36) and efflux protein (ABCA-1) expression. Furthermore, this altered macrophage phenotype impacts on foam cell formation, inhibiting ox-LDL accumulation and promoting cholesterol efflux via both PPARγ and LXRα dependent pathways. The data increases the understanding of the pathways regulated by CLA in atheroprotection, namely, inhibiting the progressive acquisition of a pro-inflammatory macrophage phenotype.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
T0901317, ≥98%
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, synthetic, ≥98.0% (TLC)
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, ≥99% (TLC), film or powder
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
GW9662, >98% (HPLC)
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Glutamine
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-Glutamine, Vetec, reagent grade, ≥99%
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
SAFC
L-Glutamine
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)