Skip to Content
Merck
  • Evaluation of protective efficacy of live attenuated Salmonella enterica serovar Gallinarum vaccine strains against fowl typhoid in chickens.

Evaluation of protective efficacy of live attenuated Salmonella enterica serovar Gallinarum vaccine strains against fowl typhoid in chickens.

Clinical and vaccine immunology : CVI (2014-07-06)
Paweł Laniewski, Arindam Mitra, Kemal Karaca, Ayub Khan, Rajeev Prasad, Roy Curtiss, Kenneth L Roland
ABSTRACT

Salmonella enterica serovar Gallinarum is the etiological agent of fowl typhoid, which constitutes a considerable economic problem for poultry growers in developing countries. The vaccination of chickens seems to be the most effective strategy to control the disease in those areas. We constructed S. Gallinarum strains with a deletion of the global regulatory gene fur and evaluated their virulence and protective efficacy in Rhode Island Red chicks and Brown Leghorn layers. The fur deletion mutant was avirulent and, when delivered orally to chicks, elicited excellent protection against lethal S. Gallinarum challenge. It was not as effective when given orally to older birds, although it was highly immunogenic when delivered by intramuscular injection. We also examined the effect of a pmi mutant and a combination of fur deletions with mutations in the pmi and rfaH genes, which affect O-antigen synthesis, and ansB, whose product inhibits host T-cell responses. The S. Gallinarum Δpmi mutant was only partially attenuated, and the ΔansB mutant was fully virulent. The Δfur Δpmi and Δfur ΔansB double mutants were attenuated but not protective when delivered orally to the chicks. However, a Δpmi Δfur strain was highly immunogenic when administered intramuscularly. All together, our results show that the fur gene is essential for the virulence of S. Gallinarum, and the fur mutant is effective as a live recombinant vaccine against fowl typhoid.

MATERIALS
Product Number
Brand
Product Description

Millipore
D-(−)-Arabinose, suitable for microbiology, ≥99.0%
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Millipore
Sucrose, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
Millipore
D-(+)-Mannose, ≥99.0% (sum of enantiomers, HPLC), suitable for microbiology
Millipore
D-(+)-Mannose, ≥99%, suitable for microbiology
Sigma-Aldrich
D-(+)-Mannose, BioUltra, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
D-(−)-Arabinose, ≥98% (GC)
Sigma-Aldrich
Sucrose, 99% (GC), Vetec, reagent grade
Sigma-Aldrich
D-(+)-Mannose, synthetic, ≥99% (GC)
Sucrose, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
D-(+)-Mannose, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
D-(+)-Mannose, ≥99% (GC), wood
Sigma-Aldrich
Chloramphenicol, meets USP testing specifications
Supelco
Chloramphenicol, VETRANAL®, analytical standard