Skip to Content
Merck
  • MHC class I limits hippocampal synapse density by inhibiting neuronal insulin receptor signaling.

MHC class I limits hippocampal synapse density by inhibiting neuronal insulin receptor signaling.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2014-08-29)
Tracy J Dixon-Salazar, Lawrence Fourgeaud, Carolyn M Tyler, Julianna R Poole, Joseph J Park, Lisa M Boulanger
ABSTRACT

Proteins of the major histocompatibility complex class I (MHCI) negatively regulate synapse density in the developing vertebrate brain (Glynn et al., 2011; Elmer et al., 2013; Lee et al., 2014), but the underlying mechanisms remain largely unknown. Here we identify a novel MHCI signaling pathway that involves the inhibition of a known synapse-promoting factor, the insulin receptor. Dominant-negative insulin receptor constructs decrease synapse density in the developing Xenopus visual system (Chiu et al., 2008), and insulin receptor activation increases dendritic spine density in mouse hippocampal neurons in vitro (Lee et al., 2011). We find that genetically reducing cell surface MHCI levels increases synapse density selectively in regions of the hippocampus where insulin receptors are expressed, and occludes the neuronal insulin response by de-repressing insulin receptor signaling. Pharmacologically inhibiting insulin receptor signaling in MHCI-deficient animals rescues synapse density, identifying insulin receptor signaling as a critical mediator of the tonic inhibitory effects of endogenous MHCI on synapse number. Insulin receptors co-immunoprecipitate MHCI from hippocampal lysates, and MHCI unmasks a cytoplasmic epitope of the insulin receptor that mediates downstream signaling. These results identify an important role for an MHCI-insulin receptor signaling pathway in circuit patterning in the developing brain, and suggest that changes in MHCI expression could unexpectedly regulate neuronal insulin sensitivity in the aging and diseased brain.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Insulin solution from bovine pancreas, 10 mg/mL insulin in 25  mM HEPES, pH 8.2, BioReagent, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Monoclonal Anti-Calbindin-D-28K antibody produced in mouse, clone CB-955, ascites fluid
Sigma-Aldrich
Anti-MAP2A Antibody, AP20, ascites fluid, clone AP20, Chemicon®
Sigma-Aldrich
Anti-Tau-1 Antibody, clone PC1C6, clone PC1C6, Chemicon®, from mouse
Sigma-Aldrich
Anti-Synaptophysin Antibody, clone SY38, clone SY38, Chemicon®, from mouse
Sigma-Aldrich
Poly(tetrafluoroethylene), powder (free-flowing), ≤12 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder (free-flowing), 1 μm particle size
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, 35 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, 200 μm particle size
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, ≥350 μm particle size
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Calcium chloride
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, >40 μm particle size
Millipore
Sucrose, ACS reagent, suitable for microbiology, ≥99.0%
Sucrose, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Poly(tetrafluoroethylene), beads
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Sucrose, 99% (GC), Vetec, reagent grade