Skip to Content
Merck

[1,5] Sigmatropic hydrogen shifts in cyclic 1,3-dienes.

The Journal of organic chemistry (2002-08-17)
B Andes Hess, John E Baldwin
ABSTRACT

Density functional calculations have been carried out for [1,5] hydrogen shifts in 1,3-cycloalkadienes (cyclohexadiene, cycloheptadiene, and cyclooctadiene). The complexity of the potential surfaces of these reactions was found to increase with ring size. For 1,3-cyclohexadiene a single transition structure for the [1,5] hydrogen shift was located, which connects the two enantiomeric conformers. For 1,3-cycloheptadiene two enantiomeric transition structures for the [1,5] hydrogen shift were located, which interconnect three conformers of the diene, a pair of enantiomeric conformers and a third achiral conformer. Finally for 1,3-cyclooctadiene two diastereomeric transition structures were found in addition to six conformers (three pairs of enantiomeric conformers) of the diene. Calculated activation energies for the [1,5] hydrogen shifts were found to be in qualitative agreement with experiment. Variation in these energies are attributed to strain energies present in either the diene or the transition structure.