Skip to Content
Merck

Inhibition of nuclear hormone receptor activity by calreticulin.

Nature (1994-02-03)
S Dedhar, P S Rennie, M Shago, C Y Hagesteijn, H Yang, J Filmus, R G Hawley, N Bruchovsky, H Cheng, R J Matusik
ABSTRACT

We have shown that a polypeptide of M(r) 60,000 (60K) that shares N-terminal homology with a calcium-binding protein, calreticulin, can bind to an amino-acid sequence motif, KXGFFKR, found in the cytoplasmic domains of all integrin alpha-subunits. The homologous amino-acid sequence, KXFFKR (where X is either G, A or V), is also present in the DNA-binding domain of all known members of the steroid hormone receptor family; amino acids in this sequence make direct contact with nucleotides in their DNA-responsive elements and are crucial for DNA binding. Here we show that both the 60K protein (p60), purified on a KLGFFKR-Sepharose affinity matrix, and recombinant calreticulin can inhibit the binding of androgen receptor to its hormone-responsive DNA element in a KXFFKR-sequence-specific manner. Calreticulin can also inhibit androgen receptor and retinoic acid receptor transcriptional activities in vivo, as well as retinoic acid-induced neuronal differentiation. Our results indicate that calreticulin can act as an important modulator of the regulation of gene transcription by nuclear hormone receptors.