Skip to Content
Merck
  • The effects of glutathione and ascorbic acid on the oxidations of 6-hydroxydopa and 6-hydroxydopamine.

The effects of glutathione and ascorbic acid on the oxidations of 6-hydroxydopa and 6-hydroxydopamine.

Biochimica et biophysica acta (1994-12-15)
A J Nappi, E Vass
ABSTRACT

The interactions of ascorbic acid (AA) and reduced glutathione (GSH) in the oxidations of the catecholaminergic neurotoxins 6-hydroxydopa (TOPA) and 6-hydroxydopamine (6-OHDA) were investigated by both high performance liquid chromatography with electrochemical detection (HPLC-ED) and spectrometric methods. These comparative studies showed TOPA and 6-OHDA to be extremely unstable, with 100% of the trihydroxyphenyls oxidized within 0.5 min at physiological pH in potassium phosphate buffer. Neither AA nor GSH was found capable of significantly impeding the oxidations of these trihydroxyphenyls, or of regenerating these substances by reducing back their oxidation products, even though such a redox exchange mechanism was demonstrated for AA and the dihydroxyphenyl dopamine. Although ineffective in keeping TOPA and 6-OHDA as reduced molecules, GSH may nevertheless influence the neurotoxicity of trihydroxyphenyls by interacting with their oxidation products forming glutathionyl conjugates, thereby switching the reaction pathway away from potentially toxic eumelanin precursors and toward the production of pheomelanin. Electrochemical analyses established the formation of two oxidation products derived from each trihydroxyphenyl, one detected at -100 mV and the other at +700 mV. AA had no effect on either oxidation product, whereas GSH significantly decreased the levels of both oxidation products. The component detected at +700 mV is the cyclized, reduced leukochrome. The identity of the component detected at -100 mV was not established, but it is considered to be either the p-quinone or the cyclized, oxidized aminochrome.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
6-Hydroxy-DL-DOPA, ≥98% (HPLC), powder