Skip to Content
Merck
  • Benzophenones from an endophytic fungus, Graphiopsis chlorocephala, from Paeonia lactiflora cultivated in the presence of an NAD+-dependent HDAC inhibitor.

Benzophenones from an endophytic fungus, Graphiopsis chlorocephala, from Paeonia lactiflora cultivated in the presence of an NAD+-dependent HDAC inhibitor.

Organic letters (2013-04-13)
Teigo Asai, Sae Otsuki, Hiroaki Sakurai, Kouwa Yamashita, Tomoji Ozeki, Yoshiteru Oshima
ABSTRACT

Graphiopsis chlorocephala was separated from the surface-sterilized healthy leaves of Paeonia lactiflora (Paeoniaceae) and cultivated with nicotinamide (an NAD(+)-dependent HDAC inhibitor). The culture conditions significantly enhanced secondary metabolite production in the fungus and led to the isolation of a structurally diverse set of new benzophenones, cephalanones A-F (1-6), and a known 2-(2,6-dihydroxy-4-methylbenzoyl)-6-hydroxybenzoic acid (7). The structures of 1-6 were determined from NMR data, single crystal X-ray diffraction, and chemical transformations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, Vetec, reagent grade, ≥96.5%
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide, pkg of 50 mg (per vial)
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide, pkg of 10 mg (per vial)
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide, pkg of 20 mg (per vial)
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, Grade AA-1
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, ≥98%, BioUltra, from yeast
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, ≥99%
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, purified by column chromatography, ≥99%
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, suitable for cell culture, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast
Sigma-Aldrich
β-Nicotinamide adenine dinucleotide hydrate, ≥95% (HPLC)