Skip to Content
Merck
  • Rhenium(I) tricarbonyl complexes of salicylaldehyde semicarbazones: synthesis, crystal structures and cytotoxicity.

Rhenium(I) tricarbonyl complexes of salicylaldehyde semicarbazones: synthesis, crystal structures and cytotoxicity.

Journal of inorganic biochemistry (2012-11-22)
Junming Ho, Wan Yen Lee, Kelvin Jin Tai Koh, Peter Peng Foo Lee, Yaw-Kai Yan
ABSTRACT

A series of N,N-disubstituted salicylaldehyde semicarbazones (SSCs), HOC(6)H(4)CHN-NHCONR(2), and their rhenium(I) tricarbonyl complexes, [ReBr(CO)(3)(SSC)], have been synthesised and characterised by IR and (1)H NMR spectroscopy. Crystallographic analysis of the complex [ReBr(CO)(3)(H(2)Bu(2))] (H(2)Bu(2)=SSC where R=Bu(n)) showed that the SSC acts as a bidentate ligand via its imino nitrogen and carbonyl oxygen atoms. The [ReBr(CO)(3)(SSC)] complexes exhibit moderate to high cytotoxicities towards MOLT-4 cells (IC(50)=1-24μM, cf. 18μM for cisplatin), and the majority of them are virtually non-toxic against non-cancerous human fibroblasts. Apoptotic assays of [ReBr(CO)(3)(H(2)Bnz(2))] (Bnz=benzyl) revealed that it mediates cytotoxicity in MOLT-4 cells via apoptosis. The complex [ReBr(CO)(3)(H(2)Bnz(2))] reacts with guanosine by proton transfer from the phenolic OH group to N(7) of guanosine. In (CD(3))(2)SO, [ReBr(CO)(3)(H(2)Bnz(2))] undergoes facile conversion to the dimeric complex, [Re(CO)(3)(HBnz(2))](2), via bromide dissociation.