Skip to Content
Merck
  • The mGlu5 Receptor Protomer-Mediated Dopamine D2 Receptor Trans-Inhibition Is Dependent on the Adenosine A2A Receptor Protomer: Implications for Parkinson's Disease.

The mGlu5 Receptor Protomer-Mediated Dopamine D2 Receptor Trans-Inhibition Is Dependent on the Adenosine A2A Receptor Protomer: Implications for Parkinson's Disease.

Molecular neurobiology (2022-07-14)
Wilber Romero-Fernandez, Jaume J Taura, René A J Crans, Marc Lopez-Cano, Ramon Fores-Pons, Manuel Narváez, Jens Carlsson, Francisco Ciruela, Kjell Fuxe, Dasiel O Borroto-Escuela
ABSTRACT

The adenosine A2A receptor (A2AR), dopamine D2 receptor (D2R) and metabotropic glutamate receptor type 5 (mGluR5) form A2AR-D2R-mGluR5 heteroreceptor complexes in living cells and in rat striatal neurons. In the current study, we present experimental data supporting the view that the A2AR protomer plays a major role in the inhibitory modulation of the density and the allosteric receptor-receptor interaction within the D2R-mGluR5 heteromeric component of the A2AR-D2R-mGluR5 complex in vitro and in vivo. The A2AR and mGluR5 protomers interact and modulate D2R protomer recognition and signalling upon forming a trimeric complex from these receptors. Expression of A2AR in HEK293T cells co-expressing D2R and mGluR5 resulted in a significant and marked increase in the formation of the D2R-mGluR5 heteromeric component in both bioluminescence resonance energy transfer and proximity ligation assays. A highly significant increase of the the high-affinity component of D2R (D2RKi High) values was found upon cotreatment with the mGluR5 and A2AR agonists in the cells expressing A2AR, D2R and mGluR5 with a significant effect observed also with the mGluR5 agonist alone compared to cells expressing only D2R and mGluR5. In cells co-expressing A2AR, D2R and mGluR5, stimulation of the cells with an mGluR5 agonist like or D2R antagonist fully counteracted the D2R agonist-induced inhibition of the cAMP levels which was not true in cells only expressing mGluR5 and D2R. In agreement, the mGluR5-negative allosteric modulator raseglurant significantly reduced the haloperidol-induced catalepsy in mice, and in A2AR knockout mice, the haloperidol action had almost disappeared, supporting a functional role for mGluR5 and A2AR in enhancing D2R blockade resulting in catalepsy. The results represent a relevant example of integrative activity within higher-order heteroreceptor complexes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Dopamine D2 receptor (DRD2) Antibody, clone 2B9, clone 3D9, from mouse
Sigma-Aldrich
Anti-Metabotropic Glutamate Receptor 5 Antibody, pain, Chemicon®, from rabbit
Sigma-Aldrich
Anti-mGluR5 Antibody, clone N75/33, clone N75/33, from mouse