Skip to Content
Merck
  • Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N-nitrosodiethylamine induced hepatocarcinogenesis.

Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N-nitrosodiethylamine induced hepatocarcinogenesis.

Cancer research (2007-10-19)
Taro Takami, Pal Kaposi-Novak, Koichi Uchida, Luis E Gomez-Quiroz, Elizabeth A Conner, Valentina M Factor, Snorri S Thorgeirsson
ABSTRACT

Hepatocyte growth factor (HGF) has been reported to have both positive and negative effects on carcinogenesis. Here, we show that the loss of c-Met signaling in hepatocytes enhanced rather than suppressed the early stages of chemical hepatocarcinogenesis. c-Met conditional knockout mice (c-metfl/fl, AlbCre+/-; MetLivKO) treated with N-nitrosodiethylamine developed significantly more and bigger tumors and with a shorter latency compared with control (w/w, AlbCre+/-; Cre-Ctrl) mice. Accelerated tumor development was associated with increased rate of cell proliferation and prolonged activation of epidermal growth factor receptor (EGFR) signaling. MetLivKO livers treated with N-nitrosodiethylamine also displayed elevated lipid peroxidation, decreased ratio of reduced glutathione to oxidized glutathione, and up-regulation of superoxide dismutase 1 and heat shock protein 70, all consistent with increased oxidative stress. Likewise, gene expression profiling done at 3 and 5 months after N-nitrosodiethylamine treatment revealed up-regulation of genes associated with cell proliferation and stress responses in c-Met mutant livers. The negative effects of c-Met deficiency were reversed by chronic p.o. administration of antioxidant N-acetyl-L-cysteine. N-acetyl-L-cysteine blocked the EGFR activation and reduced the N-nitrosodiethylamine-initiated hepatocarcinogenesis to the levels of Cre-Ctrl mice. These results argue that intact HGF/c-Met signaling is essential for maintaining normal redox homeostasis in the liver and has tumor suppressor effect(s) during the early stages of N-nitrosodiethylamine-induced hepatocarcinogenesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
ApopTag Plus Peroxidase In Situ Apoptosis Kit, The ApopTag Plus Peroxidase In Situ Apoptosis Detection Kit detects apoptotic cells by labeling & detecting DNA strand breaks by the indirect TUNEL method.
Sigma-Aldrich
Neutralization Solution B
Sigma-Aldrich
Perchloric acid, ACS reagent, 70%
Sigma-Aldrich
Perchloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., 70.0-72.0%
Sigma-Aldrich
Perchloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., 70.0-72.0%