Skip to Content
Merck
  • Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs.

Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs.

PloS one (2010-10-23)
Joseph E Peterson, Melissa E Lenczewski, Reed P Scherer
ABSTRACT

Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Collagenase from Clostridium histolyticum, powder, suitable for cell culture, ≥4 FALGPA units/mg solid, high purity, ≥700 CDU/mg solid (CDU = collagen digestion units)