Skip to Content
Merck
  • Targeting Src attenuates peritoneal fibrosis and inhibits the epithelial to mesenchymal transition.

Targeting Src attenuates peritoneal fibrosis and inhibits the epithelial to mesenchymal transition.

Oncotarget (2017-11-16)
Jun Wang, Li Wang, Liuqing Xu, Yingfeng Shi, Feng Liu, Hualin Qi, Na Liu, Shougang Zhuang
ABSTRACT

Src has been reported to mediate tissue fibrosis in several organs, but its role in peritoneal fibrosis remains unknown. In this study, we evaluated the therapeutic effect of KX2-391, a highly selective inhibitor of Src, on the development of peritoneal fibrosis in a rat model. Daily intraperitoneal injections of chlorhexidine gluconate induced peritoneal fibrosis, as indicated by thickening of the submesothelial area with an accumulation of collagen fibrils and activation of myofibroblasts. This was accompanied by time-dependent phosphorylation of Src at tyrosine 416. Administration of KX2-391 attenuated peritoneal fibrosis and abrogated increased phosphorylation of Src and multiple signaling molecules associated with tissue fibrosis, including epidermal growth factor receptor, Akt, Signal transducer and activator of transcription 3 and nuclear factor-κB in the injured peritoneum. KX2-391 also inhibited the production of proinflammatory cytokines and the infiltration of macrophages into the injured peritoneum. In cultured human peritoneal mesothelial cells, inhibition of Src by KX2-391 or siRNA resulted in decreased expression of α-smooth muscle actin (α-SMA), fibronectin and collagen I, the hallmarks of epithelial to mesenchymal transition. These results suggest that Src is a critical mediator of peritoneal fibrosis and the epithelial to mesenchymal transition. Thus, Src could be a potential therapeutic target in the treatment of peritoneal fibrosis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting mouse Src
Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O