Skip to Content
Merck
  • Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device.

Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device.

Scientific reports (2016-02-20)
Mitsuru Komeya, Hiroshi Kimura, Hiroko Nakamura, Tetsuhiro Yokonishi, Takuya Sato, Kazuaki Kojima, Kazuaki Hayashi, Kumiko Katagiri, Hiroyuki Yamanaka, Hiroyuki Sanjo, Masahiro Yao, Satoshi Kamimura, Kimiko Inoue, Narumi Ogonuki, Atsuo Ogura, Teruo Fujii, Takehiko Ogawa
ABSTRACT

In contrast to cell cultures, particularly to cell lines, tissues or organs removed from the body cannot be maintained for long in any culture conditions. Although it is apparent that in vivo regional homeostasis is facilitated by the microvascular system, mimicking such a system ex vivo is difficult and has not been proved effective. Using the culture system of mouse spermatogenesis, we addressed this issue and devised a simple microfluidic device in which a porous membrane separates a tissue from the flowing medium, conceptually imitating the in vivo relationship between the microvascular flow and surrounding tissue. Testis tissues cultured in this device successfully maintained spermatogenesis for 6 months. The produced sperm were functional to generate healthy offspring with micro-insemination. In addition, the tissue kept producing testosterone and responded to stimulation by luteinizing hormone. These data suggest that the microfluidic device successfully created in vivo-like conditions, in which testis tissue maintained its physiologic functions and homeostasis. The present model of the device, therefore, would provide a valuable foundation of future improvement of culture conditions for various tissues and organs, and revolutionize the organ culture method as a whole.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Luteinizing Hormone from human pituitary, ≥8,500 IU/mg