Skip to Content
Merck
  • Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.

Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.

Biochimica et biophysica acta (2013-04-23)
Valentina Parra, Francisco Moraga, Jovan Kuzmicic, Camila López-Crisosto, Rodrigo Troncoso, Natalia Torrealba, Alfredo Criollo, Jessica Díaz-Elizondo, Beverly A Rothermel, Andrew F G Quest, Sergio Lavandero
ABSTRACT

Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cytochrome c from Saccharomyces cerevisiae, ≥85% based on Mol. Wt. 12,588 basis
Sigma-Aldrich
ProteoMass Cytochrome c MALDI-MS Standard, vial of 10 nmol, (M+H+) 12,361.96 Da by calculation
Sigma-Aldrich
Cytochrome c from equine heart, BioUltra, ≥99% (SDS-PAGE), powder, suitable for mammalian cell culture
Sigma-Aldrich
Cytochrome c from bovine heart, ≥95% based on Mol. Wt. 12,327 basis
Sigma-Aldrich
Cytochrome c from equine heart, ≥95% based on Mol. Wt. 12,384 basis
Sigma-Aldrich
Cytochrome c from equine heart, ≥95% (SDS-PAGE)
Sigma-Aldrich
Cytochrome c from bovine heart, ≥95% based on Mol. Wt. 12,327 basis, powder, suitable for mammalian cell culture
Sigma-Aldrich
Cytochrome c from equine heart, BioReagent, suitable for GFC marker
Sigma-Aldrich
Cytochrome c from pigeon breast muscle, ≥95% based on Mol. Wt. 12,173 basis