Skip to Content
Merck
  • Cartilage repair of experimentally 11 induced osteochondral defects in New Zealand White rabbits.

Cartilage repair of experimentally 11 induced osteochondral defects in New Zealand White rabbits.

Laboratory animals (2013-03-08)
C Aulin, M Jensen-Waern, S Ekman, M Hägglund, T Engstrand, J Hilborn, P Hedenqvist
ABSTRACT

Articular cartilage has a limited capacity for self-repair in adult humans, and methods used to stimulate regeneration often result in re-growth of fibrous cartilage, which has lower durability. No current treatment option can provide complete repair. The possibility of growth factor delivery into the joint for cartilage regeneration after injury would be an attractive treatment option. A full thickness osteochondral defect of 4 mm in diameter and 2 mm deep was created by mechanical drilling in the medial femoral condyle in 20 female adult New Zealand White rabbits. In an attempt to improve regeneration a hyaluronic hydrogel system, with or without bone morphogenetic protein-2 (BMP-2) was delivered intraarticularly. The contralateral joint defect was treated with saline as control. Throughout the study, rabbits were clinically examined and after 12 (n = 6) or 24 (n = 9) weeks, the rabbits were euthanized and the joints evaluated by histology. The defects healed with fibrocartilage like tissue, and the filling of the defects ranged from less than 25% to complete. The healing of the defects varied both inter- and intra-group wise. Treatment with hyaluronan gel with or without BMP-2 had no effect on cartilage regeneration compared with controls. Instead, severe ectopic bone formation was found in seven joints treated with BMP-2. In conclusion, the present study shows that neither treatment with hyaluronic gel alone, nor in combination with BMP-2, improves the healing of an induced cartilage defect in rabbits. It further shows that BMP-2 can induce ectopic bone formation, which severely affects the functionality of the joint.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 750, contains 900-1100 ppm MEHQ as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 6,000, contains 1000 ppm 4-methoxyphenol as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 2000, contains ~1000 ppm MeHQ as stabilizer
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 20,000, contains MEHQ as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 10,000, contains MEHQ as inhibitor