Skip to Content
Merck
  • A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen.

A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen.

Insect biochemistry and molecular biology (2016-12-10)
Nena Pavlidi, Mousaalreza Khalighi, Antonis Myridakis, Wannes Dermauw, Nicky Wybouw, Dimitra Tsakireli, Euripides G Stephanou, Nikolaos E Labrou, John Vontas, Thomas Van Leeuwen
ABSTRACT

Cyflumetofen is a recently introduced acaricide with a novel mode of action, acting as an inhibitor of complex II of mitochondrial electron transport chain. It is activated by hydrolysis and the resulting de-esterified metabolite is a much stronger inhibitor. Cyflumetofen represents a great addition for the control of mite species including Tetranychus urticae, a major agricultural pest, which has the ability to develop resistance to most classes of pesticides rapidly. A resistant strain (Tu008R) was recently described and synergism experiments pointed towards the involvement of GSTs. Here, we conducted genome-wide gene expression analysis, comparing Tu008R with its parental susceptible strain, and identified the delta GST TuGSTd05 as the prime resistance-conferring candidate. Docking analysis suggests that both cyflumetofen and its de-esterified metabolite are potential substrates for conjugation by TuGSTd05. Several amino acids were identified that might be involved in the interaction, with Y107 and N103 possibly having an important role. To further investigate interaction as well as the role of Y107 and N103 in vitro, we recombinantly expressed and kinetically characterized the wild type TuGSTd05, TuGSTd05 Y107F and TuGSTd05 N103L mutants. While cyflumetofen was not found to act as a strong inhibitor, the de-esterified metabolite showed strong affinity for TuGSTd05 (IC