Skip to Content
Merck
  • Microenvironmental regulation of telomerase isoforms in human embryonic stem cells.

Microenvironmental regulation of telomerase isoforms in human embryonic stem cells.

Stem cells and development (2014-04-23)
Lida Radan, Chris S Hughes, Jonathan H Teichroeb, Flora M Vieira Zamora, Michael Jewer, Lynne-Marie Postovit, Dean Harvey Betts
ABSTRACT

Recent evidence points to extra-telomeric, noncanonical roles for telomerase in regulating stem cell function. In this study, human embryonic stem cells (hESCs) were cultured in 20% or 2% O2 microenvironments for up to 5 days and evaluated for telomerase reverse transcriptase (TERT) expression and telomerase activity. Results showed increased cell survival and maintenance of the undifferentiated state with elevated levels of nuclear TERT in 2% O2-cultured hESCs despite no significant difference in telomerase activity compared with their high-O2-cultured counterparts. Pharmacological inhibition of telomerase activity using a synthetic tea catechin resulted in spontaneous hESC differentiation, while telomerase inhibition with a phosphorothioate oligonucleotide telomere mimic did not. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed variations in transcript levels of full-length and alternate splice variants of TERT in hESCs cultured under varying O2 atmospheres. Steric-blocking of Δα and Δβ hTERT splicing using morpholino oligonucleotides altered the hTERT splicing pattern and rapidly induced spontaneous hESC differentiation that appeared biased toward endomesodermal and neuroectodermal cell fates, respectively. Together, these results suggest that post-transcriptional regulation of TERT under varying O2 microenvironments may help regulate hESC survival, self-renewal, and differentiation capabilities through expression of extra-telomeric telomerase isoforms.

MATERIALS
Product Number
Brand
Product Description

Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Anti-Oct-4 Antibody, clone 10H11.2, clone 10H11.2, Chemicon®, from mouse
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, HPLC/spectrophotometric grade
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 1% cyclohexane, A15 CYCLO1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Mercaptoethanol, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
2-Mercaptoethanol, BioUltra, for molecular biology, ≥99.0% (GC)
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Anti-Stage-Specific Embryonic Antigen-1 Antibody, clone MC-480, clone MC-480, Chemicon®, from mouse
Sigma-Aldrich
Anti-Stage-Specific Embryonic Antigen-4 Antibody, clone MC-813-70, clone MC-813-70, Chemicon®, from mouse