Skip to Content
Merck
  • Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma.

Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma.

Cancer research (2014-05-31)
Myriam M Chaumeil, Peder E Z Larson, Sarah M Woods, Larry Cai, Pia Eriksson, Aaron E Robinson, Janine M Lupo, Daniel B Vigneron, Sarah J Nelson, Russell O Pieper, Joanna J Phillips, Sabrina M Ronen
ABSTRACT

Mutations of the isocitrate dehydrogenase 1 (IDH1) gene are among the most prevalent in low-grade glioma and secondary glioblastoma, represent an early pathogenic event, and are associated with epigenetically driven modulations of metabolism. Of particular interest is the recently uncovered relationship between the IDH1 mutation and decreased activity of the branched-chain amino acid transaminase 1 (BCAT1) enzyme. Noninvasive imaging methods that can assess BCAT1 activity could therefore improve detection of mutant IDH1 tumors and aid in developing and monitoring new targeted therapies. BCAT1 catalyzes the transamination of branched-chain amino acids while converting α-ketoglutarate (α-KG) to glutamate. Our goal was to use (13)C magnetic resonance spectroscopy to probe the conversion of hyperpolarized [1-(13)C] α-KG to hyperpolarized [1-(13)C] glutamate as a readout of BCAT1 activity. We investigated two isogenic glioblastoma lines that differed only in their IDH1 status and performed experiments in live cells and in vivo in rat orthotopic tumors. Following injection of hyperpolarized [1-(13)C] α-KG, hyperpolarized [1-(13)C] glutamate production was detected both in cells and in vivo, and the level of hyperpolarized [1-(13)C] glutamate was significantly lower in mutant IDH1 cells and tumors compared with their IDH1-wild-type counterparts. Importantly however, in our cells the observed drop in hyperpolarized [1-(13)C] glutamate was likely mediated not only by a drop in BCAT1 activity, but also by reductions in aspartate transaminase and glutamate dehydrogenase activities, suggesting additional metabolic reprogramming at least in our model. Hyperpolarized [1-(13)C] glutamate could thus inform on multiple mutant IDH1-associated metabolic events that mediate reduced glutamate production.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
L-Leucine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Leucine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Ammonium-14N2 sulfate solution, 40 wt. % in H2O, 99.99 atom % 14N
Sigma-Aldrich
L-Leucine, 99%, FG
Sigma-Aldrich
Ammonium sulfate-14N2 solution, 40 wt. % in H2O, 99.99 atom % 14N
Sigma-Aldrich
Ammonium-14N2,sulfate-16O4, 99.99 atom % 16O, 99.99 atom % 14N
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Ammonium sulfate, ACS reagent, ≥99.0%
Supelco
Ammonium sulfate, analytical standard, for Nitrogen Determination According to Kjeldahl Method, traceable to NIST SRM 194
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Ammonium sulfate, for molecular biology, ≥99.0%
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source