Skip to Content
Merck
  • Quantification of plasma HIV RNA using chemically engineered peptide nucleic acids.

Quantification of plasma HIV RNA using chemically engineered peptide nucleic acids.

Nature communications (2014-10-07)
Chao Zhao, Travis Hoppe, Mohan Kumar Haleyur Giri Setty, Danielle Murray, Tae-Wook Chun, Indira Hewlett, Daniel H Appella
ABSTRACT

The remarkable stability of peptide nucleic acids (PNAs) towards enzymatic degradation makes this class of molecules ideal to develop as part of a diagnostic device. Here we report the development of chemically engineered PNAs for the quantitative detection of HIV RNA at clinically relevant levels that are competitive with current PCR-based assays. Using a sandwich hybridization approach, chemical groups were systematically introduced into a surface PNA probe and a reporter PNA probe to achieve quantitative detection for HIV RNA as low as 20 copies per millilitre of plasma. For the surface PNA probe, four cyclopentane groups were incorporated to promote stronger binding to the target HIV RNA compared with PNA without the cyclopentanes. For the reporter PNA probe, 25 biotin groups were attached to promote strong signal amplification after binding to the target HIV RNA. These general approaches to engineer PNA probes may be used to detect other RNA target sequences.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
N-Ethyldiisopropylamine solution, suitable for peptide synthesis, ~2 M in 1-methyl-2-pyrrolidinone
Supelco
Sodium carbonate, reference material for titrimetry, certified by BAM, >99.5%
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Dimethylformamide, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
1-Methyl-2-pyrrolidinone, suitable for HPLC, ≥99%
Sigma-Aldrich
N,N-Dimethylformamide, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Diethyl ether, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Diethyl ether, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Sodium carbonate, ACS reagent, anhydrous, ≥99.5%, powder or granules
Sigma-Aldrich
Diethyl ether, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Diethyl ether, reagent grade, ≥98%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
Sulfuric acid, puriss. p.a., for determination of Hg, ACS reagent, reag. ISO, reag. Ph. Eur., 95.0-97.0%
Sigma-Aldrich
Diethyl ether, contains BHT as inhibitor, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
N,N-Dimethylformamide, ACS reagent, ≥99.8%
Sigma-Aldrich
Sodium carbonate, ACS reagent (primary standard), anhydrous, 99.95-100.05% dry basis
Sigma-Aldrich
N,N-Dimethylformamide, anhydrous, 99.8%
Sigma-Aldrich
Piperidine, ReagentPlus®, 99%
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Supelco
1-Methyl-2-pyrrolidinone, analytical standard
Sigma-Aldrich
1-Methyl-2-pyrrolidinone, anhydrous, 99.5%
Sigma-Aldrich
m-Cresol, 99%
Sigma-Aldrich
Trifluoroacetic acid, ReagentPlus®, 99%
Sigma-Aldrich
Trifluoroacetic acid, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Pyridine, suitable for HPLC, ≥99.9%