Skip to Content
Merck
  • Plasticity of binocularity and visual acuity are differentially limited by nogo receptor.

Plasticity of binocularity and visual acuity are differentially limited by nogo receptor.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2014-08-29)
Céleste-Élise Stephany, Leanne L H Chan, Sherveen N Parivash, Hilary M Dorton, Mariel Piechowicz, Shenfeng Qiu, Aaron W McGee
ABSTRACT

The closure of developmental critical periods consolidates neural circuitry but also limits recovery from early abnormal sensory experience. Degrading vision by one eye throughout a critical period both perturbs ocular dominance (OD) in primary visual cortex and impairs visual acuity permanently. Yet understanding how binocularity and visual acuity interrelate has proven elusive. Here we demonstrate the plasticity of binocularity and acuity are separable and differentially regulated by the neuronal nogo receptor 1 (NgR1). Mice lacking NgR1 display developmental OD plasticity as adults and their visual acuity spontaneously improves after prolonged monocular deprivation. Restricting deletion of NgR1 to either cortical interneurons or a subclass of parvalbumin (PV)-positive interneurons alters intralaminar synaptic connectivity in visual cortex and prevents closure of the critical period for OD plasticity. However, loss of NgR1 in PV neurons does not rescue deficits in acuity induced by chronic visual deprivation. Thus, NgR1 functions with PV interneurons to limit plasticity of binocularity, but its expression is required more extensively within brain circuitry to limit improvement of visual acuity following chronic deprivation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Triton X-100, BioXtra
Sigma-Aldrich
Sodium azide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Trisodium citrate dihydrate, meets USP testing specifications