Skip to Content
Merck
  • Cooperativity and intermediates in the equilibrium reactions of Fe(II,III) with ethanethiolate in N-methylformamide solution.

Cooperativity and intermediates in the equilibrium reactions of Fe(II,III) with ethanethiolate in N-methylformamide solution.

Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry (2005-05-03)
Patrick Frank, Keith O Hodgson
ABSTRACT

The reaction of FeCl(2) or FeCl(3) with sodium ethanethiolate (SEt) in N-methylformamide (NMF) has been reevaluated to rectify a previous Fe(II) oxidation artifact. On titrating Fe(II) with EtS(-) concentrations up to 12 mol Eq, new features in the UV/vis spectrum (epsilon(344)=(3.1+/-0.2)x10(3) M(-1) cm(-1); epsilon(486)=(4.5+/-0.1)x10(2) M(-1) cm(-1)) indicated that the first observable step was the formation of a single complex different from the known tetrahedral tetrathiolate, [Fe(SEt)(4)](2-) . As the EtS(-) concentration increased past 12.5 mol Eq the UV/vis spectrum gradually transformed to that of [Fe(SEt)(4)](2-) (lambda(max)=314 nm). A Hill-formalism fit to the titration data of the initially formed complex indicated cooperative ligation by three ethanethiolate ions, with K(coop)=(1.7+/-0.1)x10(3) M(-3) and Hill "n"=2.4+/-0.1 (r=0.997). The 3:1 EtS(-)-Fe(II) complex is proposed to be [Fe(2)(SEt)(6)](2-). Titration of Fe(III) with EtS(-) showed direct cooperative formation of [Fe(SEt)(4)](-) [epsilon(340)=(3.4+/-0.5)x10(3) M(-1) cm(-1)] with a Hill-formalism K(coop)=(4.3+/-0.1)x10(2) M(-4) and a Hill coefficient "n"=3.7+/-0.2 (r=0.996). Further ligation past [Fe(SEt)(4)](-) was observed at EtS(-) concentrations above 35 mol Eq. The Fe(III) Hill constants are at variance with our previous report. However, the UV/vis spectrum of Fe(III) in NMF solution was found to change systematically over time, consistent with a slow progressive deprotonation of [Fe(nmf)](3+). The observed time-to-time differences in the equilibrium chemistry of Fe(III) with ethanethiolate in NMF thus reflect variation in the microscopic solution composition of FeCl(3) in alkaline NMF solvent. These results are related to the chemistry of nitrogenase FeMo cofactor in alkaline NMF solution.