Skip to Content
Merck

X-ray crystal structure of voltage-gated proton channel.

Nature structural & molecular biology (2014-03-04)
Kohei Takeshita, Souhei Sakata, Eiki Yamashita, Yuichiro Fujiwara, Akira Kawanabe, Tatsuki Kurokawa, Yoshifumi Okochi, Makoto Matsuda, Hirotaka Narita, Yasushi Okamura, Atsushi Nakagawa
ABSTRACT

The voltage-gated proton channel Hv1 (or VSOP) has a voltage-sensor domain (VSD) with dual roles of voltage sensing and proton permeation. Its gating is sensitive to pH and Zn(2+). Here we present a crystal structure of mouse Hv1 in the resting state at 3.45-Å resolution. The structure showed a 'closed umbrella' shape with a long helix consisting of the cytoplasmic coiled coil and the voltage-sensing helix, S4, and featured a wide inner-accessible vestibule. Two out of three arginines in S4 were located below the phenylalanine constituting the gating charge-transfer center. The extracellular region of each protomer coordinated a Zn(2+), thus suggesting that Zn(2+) stabilizes the resting state of Hv1 by competing for acidic residues that otherwise form salt bridges with voltage-sensing positive charges on S4. These findings provide a platform for understanding the general principles of voltage sensing and proton permeation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Zinc, dust, <10 μm, ≥98%
Sigma-Aldrich
Zinc, granular, 20-30 mesh, ACS reagent, ≥99.8%
Sigma-Aldrich
Zinc, powder, <150 μm, 99.995% trace metals basis