Skip to Content
Merck
  • Protein-coated polymer as a matrix for enzyme immobilization: immobilization of trypsin on bovine serum albumin-coated allyl glycidyl ether-ethylene glycol dimethacrylate copolymer.

Protein-coated polymer as a matrix for enzyme immobilization: immobilization of trypsin on bovine serum albumin-coated allyl glycidyl ether-ethylene glycol dimethacrylate copolymer.

Biotechnology progress (2014-01-23)
Lakshmi Swarnalatha Jasti, Sandhya Rani Dola, Thenkrishnan Kumaraguru, Sreedhar Bajja, Nitin W Fadnavis, Uma Addepally, Kishor Rajdeo, Surendra Ponrathnam, Sarika Deokar
ABSTRACT

Allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymer with 25% crosslink density (AGE-25) shows excellent bovine serum albumin (BSA) adsorption (up to 16% (w/w)) at pH 8.0 and the adsorbed BSA is strongly bound. This protein-coated polymer provides a novel matrix with naturally existing functional groups such as thiol, amino, and carboxylic acid that are available for covalent immobilization of functional enzymes. Employing appropriate strategies, trypsin as a model protein was covalently bound to BSA-coated matrix both independently, and in a stepwise manner on the same matrix, with less than 5% loss of enzyme activity during immobilization. Glutaraldehyde crosslinking after immobilization provide stable enzyme preparation with activity of 510 units/g recycled up to six times without loss of enzyme activity. AFM studies reveal that the polymer surface has protein peaks and valleys rather than a uniform monolayer distribution of the protein and the immobilized enzyme preparation can best be described as polymer supported cross-linked enzyme aggregates (CLEAs).