Skip to Content
Merck
  • Experimental evidence for a 9-binding subsite of Bacillus licheniformis thermostable α-amylase.

Experimental evidence for a 9-binding subsite of Bacillus licheniformis thermostable α-amylase.

FEBS letters (2014-01-21)
Phuong Lan Tran, Jin-Sil Lee, Kwan-Hwa Park
ABSTRACT

The action pattern of Bacillus licheniformis thermostable α-amylase (BLA) was analyzed using a series of (14)C-labeled and non-labeled maltooligosaccharides from maltose (G2) to maltododecaose (G12). Maltononaose (G9) was the preferred substrate, and yielded the smallest Km=0.36 mM, the highest kcat=12.86 s(-1), and a kcat/Km value of 35.72 s(-1) mM(-1), producing maltotriose (G3) and maltohexaose (G6) as the major product pair. Maltooctaose (G8) was hydrolyzed into two pairs of products: G3 and maltopentaose (G5), and G2 and G6 with cleavage frequencies of 0.45 and 0.30, respectively. Therefore, we propose a model with nine subsites: six in the terminal non-reducing end-binding site and three at the reducing end-binding site in the binding region of BLA.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
α-Amylase, heat-stable, solution, for use in Total Dietary Fiber Assay, TDF-100A
Sigma-Aldrich
α-Amylase from porcine pancreas, Type VI-B, ≥5 units/mg solid
Sigma-Aldrich
Taka-Diastase from Aspergillus oryzae, powder, slightly beige, ~100 U/mg
Sigma-Aldrich
α-Amylase from Bacillus sp., powder, yellow-brown, ~50 U/mg
Sigma-Aldrich
α-Amylase from Bacillus sp., liquid
Sigma-Aldrich
α-Amylase from human saliva, Type XIII-A, lyophilized powder, 300-1,500 units/mg protein
Sigma-Aldrich
α-Amylase from human saliva, Type IX-A, lyophilized powder, 1,000-3,000 units/mg protein
Sigma-Aldrich
α-Amylase from Aspergillus oryzae, powder, ~30 U/mg
Sigma-Aldrich
α-Amylase from Aspergillus oryzae, ≥150 units/mg protein (biuret)