Skip to Content
Merck
  • Use of 19F NMR spectroscopy to screen chemical libraries for ligands that bind to proteins.

Use of 19F NMR spectroscopy to screen chemical libraries for ligands that bind to proteins.

Organic & biomolecular chemistry (2004-02-27)
Tobias Tengel, Tomas Fex, Hans Emtenas, Fredrik Almqvist, Ingmar Sethson, Jan Kihlberg
ABSTRACT

Identification of compounds from chemical libraries that bind to macromolecules by use of NMR spectroscopy has gained increasing importance during recent years. A simple methodology based on (19)F NMR spectroscopy for the screening of ligands that bind to proteins, which also provides qualitative information about relative binding strengths and the presence of multiple binding sites, is presented here. A library of fluorinated compounds was assembled and investigated for binding to the two bacterial chaperones PapD and FimC, and also to human serum albumin (HSA). It was found that library members which are bound to a target protein could be identified directly from line broadening and/or induced chemical shifts in a single, one-dimensional (19)F NMR spectrum. The results obtained for binding to PapD using (19)F NMR spectroscopy agreed well with independent studies based on surface plasmon resonance, providing support for the versatility and accuracy of the technique. When the library was titrated to a solution of PapD chemical shift and linewidth changes were observed with increasing ligand concentration, which indicated the presence of several binding sites on PapD and enabled the assessment of relative binding strengths for the different ligands. Screening by (19)F NMR spectroscopy should thus be a valuable addition to existing NMR techniques for evaluation of chemical libraries in bioorganic and medicinal chemistry.