Skip to Content
Merck

Human genome-guided identification of memory-modulating drugs.

Proceedings of the National Academy of Sciences of the United States of America (2013-10-23)
Andreas Papassotiropoulos, Christiane Gerhards, Angela Heck, Sandra Ackermann, Amanda Aerni, Nathalie Schicktanz, Bianca Auschra, Philippe Demougin, Eva Mumme, Thomas Elbert, Verena Ertl, Leo Gschwind, Edveena Hanser, Kim-Dung Huynh, Frank Jessen, Iris-Tatjana Kolassa, Annette Milnik, Paolo Paganetti, Klara Spalek, Christian Vogler, Andreas Muhs, Andrea Pfeifer, Dominique J-F de Quervain
ABSTRACT

In the last decade there has been an exponential increase in knowledge about the genetic basis of complex human traits, including neuropsychiatric disorders. It is not clear, however, to what extent this knowledge can be used as a starting point for drug identification, one of the central hopes of the human genome project. The aim of the present study was to identify memory-modulating compounds through the use of human genetic information. We performed a multinational collaborative study, which included assessment of aversive memory--a trait central to posttraumatic stress disorder--and a gene-set analysis in healthy individuals. We identified 20 potential drug target genes in two genomewide-corrected gene sets: the neuroactive ligand-receptor interaction and the long-term depression gene set. In a subsequent double-blind, placebo-controlled study in healthy volunteers, we aimed at providing a proof of concept for the genome-guided identification of memory modulating compounds. Pharmacological intervention at the neuroactive ligand-receptor interaction gene set led to significant reduction of aversive memory. The findings demonstrate that genome information, along with appropriate data mining methodology, can be used as a starting point for the identification of memory-modulating compounds.