Skip to Content
Merck
  • Effect of side chain length on bile acid conjugation: glucuronidation, sulfation and coenzyme A formation of nor-bile acids and their natural C24 homologs by human and rat liver fractions.

Effect of side chain length on bile acid conjugation: glucuronidation, sulfation and coenzyme A formation of nor-bile acids and their natural C24 homologs by human and rat liver fractions.

Hepatology (Baltimore, Md.) (1988-03-01)
R B Kirkpatrick, M D Green, L R Hagey, A F Hofmann, T R Tephly
ABSTRACT

The effect of side chain length on bile acid conjugation by human and rat liver fractions was examined. The rate of conjugation with glucuronic acid, sulfate and coenzyme A of several natural (C24) bile acids was compared with that of their corresponding nor-bile acids. The rate of coenzyme A ester formation by nor-bile acids was much lower than that of the natural bile acids. In human liver microsomes, the rate of coenzyme A formation was less than 8% of the rate for the corresponding C24 bile acid. Rat liver microsomes formed the coenzyme A ester of nor-bile acids less than 20% of the rate of their corresponding C24 homologs. Glucuronidation rates were greater than sulfation rates in both species. With human liver microsomes, nor-bile acids were glucuronidated more rapidly than their corresponding C24 homologs, whereas with rat liver microsomes the reverse was true. Purified 3 alpha-OH androgen UDP-glucuronyltransferase catalyzed the glucuronidation of both nor-bile acids and bile acids. Human liver cytosol sulfated nor-bile acids more slowly than the corresponding bile acids. Rat liver cytosol, however, sulfated nor-bile acids more rapidly than the corresponding bile acids. The highest rate was seen with lithocholylglycine. The results indicate that the novel biotransformation of nor-bile acids seen in vivo--sulfation and glucuronidation rather than amidation--is most likely explained as a consequent of defective amidation, to which the rate of coenzyme A formation contributes. Thus, side chain and nuclear structures as well as species differences in conjugating enzyme activity are determinants of the pattern of bile acid biotransformation by the mammalian liver.