Skip to Content
Merck
  • Differential effects of whole soy extract and soy isoflavones on apoptosis in prostate cancer cells.

Differential effects of whole soy extract and soy isoflavones on apoptosis in prostate cancer cells.

Experimental biology and medicine (Maywood, N.J.) (2010-04-21)
Anna Hsu, Tammy M Bray, William G Helferich, Daniel R Doerge, Emily Ho
ABSTRACT

Previous studies have suggested that soy isoflavones exert anticarcinogenic effects against prostate cancer. We propose that soy extracts, containing a mixture of soy isoflavones and other bioactive components, would be a more potent chemo-preventive agent than individual soy isoflavones. We compared the apoptotic effects of whole soy extracts and individual soy isoflavones, genistein and daidzein, on prostate cancer cells. The soy extract contained 50% w/w of total isoflavones with approximately 1:5.5:3.5 ratios of genistin, daidzin and glycitin, respectively. Benign prostate hyperplasia (BPH-1), LnCap and PC3 cells were treated with varying concentrations of soy extract, genistein or daidzein and analyzed for cell cycle alterations and induction of apoptosis. At equal concentrations (25 micromol/L), soy extract induced a significantly higher percentage of cells undergoing apoptosis than genistein or daidzein (P < 0.001). No significant changes in cell cycle arrest or apoptosis were observed in non-cancerous BPH-1 cells treated with soy extract, suggesting that the effects of soy extract may be tumor cell specific. On the contrary, both genistein and daidzein induced apoptosis in BPH-1 cells, suggesting that individual isoflavones may have cytotoxicity in non-cancerous cells. Soy extracts also increased Bax expression in PC3 cells, but no significant changes in nuclear factor kappaB (NF kappaB) activation were detected, suggesting that the induction of apoptosis was independent of the NF kappaB pathway. Food products that bear a combination of active compounds may be more efficacious and safer as chemo-preventive agents than individual compounds. This 'whole-food'-based approach is significant for the development of public health recommendations for prostate cancer prevention.