Skip to Content
Merck
  • Subcellular mRNA Localization Regulates Ribosome Biogenesis in Migrating Cells.

Subcellular mRNA Localization Regulates Ribosome Biogenesis in Migrating Cells.

Developmental cell (2020-11-11)
Maria Dermit, Martin Dodel, Flora C Y Lee, Muhammad S Azman, Hagen Schwenzer, J Louise Jones, Sarah P Blagden, Jernej Ule, Faraz K Mardakheh
ABSTRACT

Translation of ribosomal protein-coding mRNAs (RP-mRNAs) constitutes a key step in ribosome biogenesis, but the mechanisms that modulate RP-mRNA translation in coordination with other cellular processes are poorly defined. Here, we show that subcellular localization of RP-mRNAs acts as a key regulator of their translation during cell migration. As cells migrate into their surroundings, RP-mRNAs localize to the actin-rich cell protrusions. This localization is mediated by La-related protein 6 (LARP6), an RNA-binding protein that is enriched in protrusions. Protrusions act as hotspots of translation for RP-mRNAs, enhancing RP synthesis, ribosome biogenesis, and the overall protein synthesis in migratory cells. In human breast carcinomas, epithelial-to-mesenchymal transition (EMT) upregulates LARP6 expression to enhance protein synthesis and support invasive growth. Our findings reveal LARP6-mediated mRNA localization as a key regulator of ribosome biogenesis during cell migration and demonstrate a role for this process in cancer progression downstream of EMT.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cholera Toxin from Vibrio cholerae, ≥90% (SDS-PAGE), lyophilized powder
Sigma-Aldrich
Insulin from bovine pancreas, γ-irradiated, BioXtra, suitable for cell culture, potency: ≥20 units/mg (USP units), lyophilized powder
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
MISSION® siRNA Product Offerings, Custom and Predesigned siRNA
Sigma-Aldrich
Crystal Violet, ACS reagent, ≥90.0% anhydrous basis
Sigma-Aldrich
Puromycin dihydrochloride, Ready Made Solution, from Streptomyces alboniger, 10 mg/mL in H2O, suitable for cell culture