Skip to Content
Merck
  • Serotonin synthesis and metabolism-related molecules in a human prostate cancer cell line.

Serotonin synthesis and metabolism-related molecules in a human prostate cancer cell line.

Oncology letters (2011-03-01)
Toshiaki Shinka, Dai Onodera, Tetsuji Tanaka, Noriaki Shoji, Tadaaki Miyazaki, Tetsuya Moriuchi, Takahiro Fukumoto
ABSTRACT

Prostate cancer is one of the most common tumors in males and its incidence is steadily increasing worldwide. Serotonin or 5-hydroxytryptamine (5-HT) is a well-known neurotransmitter that mediates a wide variety of physiological effects. An increase in the number of 5-HT-releasing neuroendocrine (NE) cells has been correlated with tumor progression. However, it is particularly unclear whether released 5-HT or the release of 5-HT has a role in tumor cell growth. We hypothesized that 5-HT synthesis and metabolism in NE cells regulate the growth of prostate cancer cells. In the present study, 5-HT was found to play a role as a cell growth factor in prostate cancer cells. Moreover, the pharmacological inhibition of 5-HT synthesis and metabolism interrupted the growth of prostate cancer cells. To confirm the existence of 5-HT in prostate cancer cells, we performed ELISA, HPLC, RT-PCR and immunohistochemical analyses. A high expression of tryptophan hydroxylase (TPH-1), dopa decarboxylase (DDC) and monoamine oxidase A (MAO-A) was noted in the prostate cancer cells when compared with normal prostate cells. Previous studies showed that 5-HT stimulated the proliferation of prostate cancer cells mediated by 5-HT receptors 5-HTR1A and R1B. However, cell proliferation was significantly inhibited when siRNA for both DDC and TPH-1 was transfected to the cells. Consequently, we propose that the secretion system of prostate NE cells capable of 5-HT synthesis and metabolism plays a significant role in prostate tumor generation and progression. These findings provide crucial clues for the development of potential pharmacotherapeutics to slow prostate tumor progression.