Skip to Content
Merck
  • Heat Shock Factor 2 Protects against Proteotoxicity by Maintaining Cell-Cell Adhesion.

Heat Shock Factor 2 Protects against Proteotoxicity by Maintaining Cell-Cell Adhesion.

Cell reports (2020-01-16)
Jenny Joutsen, Alejandro Jose Da Silva, Jens Christian Luoto, Marek Andrzej Budzynski, Anna Serafia Nylund, Aurelie de Thonel, Jean-Paul Concordet, Valérie Mezger, Délara Sabéran-Djoneidi, Eva Henriksson, Lea Sistonen
ABSTRACT

Maintenance of protein homeostasis, through inducible expression of molecular chaperones, is essential for cell survival under protein-damaging conditions. The expression and DNA-binding activity of heat shock factor 2 (HSF2), a member of the heat shock transcription factor family, increase upon exposure to prolonged proteotoxicity. Nevertheless, the specific roles of HSF2 and the global HSF2-dependent gene expression profile during sustained stress have remained unknown. Here, we found that HSF2 is critical for cell survival during prolonged proteotoxicity. Strikingly, our RNA sequencing (RNA-seq) analyses revealed that impaired viability of HSF2-deficient cells is not caused by inadequate induction of molecular chaperones but is due to marked downregulation of cadherin superfamily genes. We demonstrate that HSF2-dependent maintenance of cadherin-mediated cell-cell adhesion is required for protection against stress induced by proteasome inhibition. This study identifies HSF2 as a key regulator of cadherin superfamily genes and defines cell-cell adhesion as a determinant of proteotoxic stress resistance.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MEM Non-essential Amino Acid Solution (100×), without L-glutamine, liquid, sterile-filtered, BioReagent, suitable for cell culture