Skip to Content
Merck
  • Incomplete Restoration of Angiotensin II-Induced Renal Extracellular Matrix Deposition and Inflammation Despite Complete Functional Recovery in Rats.

Incomplete Restoration of Angiotensin II-Induced Renal Extracellular Matrix Deposition and Inflammation Despite Complete Functional Recovery in Rats.

PloS one (2015-06-11)
Anne-Roos S Frenay, Saleh Yazdani, Miriam Boersema, Anne Marijn van der Graaf, Femke Waanders, Jacob van den Born, Gerjan J Navis, Harry van Goor
ABSTRACT

Some diseases associated with a temporary deterioration in kidney function and/or development of proteinuria show an apparently complete functional remission once the initiating trigger is removed. While it was earlier thought that a transient impairment of kidney function is harmless, accumulating evidence now suggests that these patients are more prone to developing renal failure later in life. We therefore sought to investigate to what extent renal functional changes, inflammation and collagen deposition are reversible after cessation of disease induction, potentially explaining residual sensitivity to damage. Using a rat model of Angiotensin II (Ang II)-induced hypertensive renal disease we show the development of severe hypertension (212 ± 10.43 vs. 146 ± 1.4 mmHg, p<0.001) and proteinuria (51.4 ± 6.3 vs. 14.7 ± 2.0 mg/24h, p<0.01) with declined creatinine clearance (2.0 ± 0.5 vs. 4.9 ± 0.6 mL/min, p<0.001) to occur after 3 weeks of Ang II infusion. At the structural level, Ang II infusion resulted in interstitial inflammation (18.8 ± 4.8 vs. 3.6 ± 0.5 number of macrophages, p<0.001), renal interstitial collagen deposition and lymphangiogenesis (4.1 ± 0.4 vs. 2.2 ± 0.4 number of lymph vessels, p<0.01). Eight weeks after cessation of Ang II, all clinical parameters, pre-fibrotic changes such as myofibroblast transformation and increase in lymph vessel number (lymphangiogenesis) returned to control values. However, glomerular desmin expression, glomerular and periglomerular macrophages and interstitial collagens remained elevated. These dormant abnormalities indicate that after transient renal function decline, inflammation and collagen deposition may persist despite normalization of the initiating pathophysiological stimulus perhaps rendering the kidney more vulnerable to further damage.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Urea, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Creatinine, anhydrous, ≥98%
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
Monoclonal Anti-Actin, α-Smooth Muscle, clone 1A4, ascites fluid
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)